
Full usage example of App Architecture, Retrofit,
Room, Hilt and Coroutines.

Download the Starter Files for this project here
https://drive.google.com/file/d/1yM2Y3lc4S20mAoiCWNKrAisoT-Jg07q4/view?
usp=sharing

Download the starter Project from here (Optional - not necessary for this
tutorial):
https://drive.google.com/file/d/1i0wSsU6s9mqnaePDqYl8Ls0MfB6GUBCS/
view?usp=sharing

Download the Full App Created in this Guide:
https://drive.google.com/file/d/1sl_T-_zr8w0z7riMyvpNlReB8WcYN5N6/view?
usp=sharing

Download the Generic useful classes to use in other projects:
https://drive.google.com/file/d/1fpH2qcyI0020pY0ZbB1yN69wmU0xT_NG/view?
usp=sharing

We are going to put it all together now for building a clean architecture app that
will communicate with both local and remote databases and will use Hilt
dependency injection library for reducing boilerplate code.

Before we begin diving into our code let’s look at the remote database. We will
use one of the most Common web service for testing: the rick and morty API.
You can explore it here https://rickandmortyapi.com just visit the docs and look
the REST API, we have the characters, locations and episodes data, we will get
all the characters and show them nicely in a RecyclerView and by clicking on
each character we will show it in details.

So our base url will be:

https://rickandmortyapi.com/api

And we will access the /character resource

Lets look at the retuned JSON:
You can use this site for json formatting - just paste the full url
https://jsonformatter.curiousconcept.com
https://rickandmortyapi.com/api/character

Even though we need only the JSON objects in the result array in order to
simplify the Gson Builder factory we will create data classes for the character,
the info object and the root object which will contain a list of characters and the

total info.

Step 1 - Project Setup
Go ahead open a new Android Studio Project and create the following project
structure:

In our Project we will divide our project to:
data - it will include our models, local and remote database data operations
and repositories.
di - it will include all of our injected dependencies and we will to that with the
help of Hilt.
ui - all of out UI related components and their ViewModels (yes view models
goes there).
utils - all of the helper classes and project related general functions.
Go ahead and create the packages mentioned above and their sub folders.

Move your MainActivity to the ui package and in the root package create your
Application class for Hilt and add it’s name to your manifest file.

In the end it should look like this:

Also in the utils package a create Constants class to hold out Base url on which
we will add the specific resource for each GET call (remember to add the / at
the end of the path:

If you are already in your Manifest don’t forget to the add the Internet install
time permission used for our retrofit calls:

Now let’s go to our project and app Gradle files and get all the 3rd party
libraries dependencies:

In your project Gradle file we just need to add Hilt:
dependencies {
 ...
 classpath 'com.google.dagger:hilt-android-gradle-plugin:2.38.1'
 }

In your app Gradle file we need add the plugins:

id 'kotlin-kapt'
id 'dagger.hilt.android.plugin'

And a whole bunch of stuff under our dependency :

//Retrofit
implementation 'com.squareup.retrofit2:retrofit:2.9.0'
implementation 'com.squareup.retrofit2:converter-gson:2.9.0'

//Lifecycle
def lifecycle_version = "2.3.1"
implementation "androidx.lifecycle:lifecycle-viewmodel-ktx:$lifecycle_version"
implementation "androidx.lifecycle:lifecycle-livedata-ktx:$lifecycle_version"
implementation "androidx.lifecycle:lifecycle-common-java8:$lifecycle_version"
implementation 'androidx.lifecycle:lifecycle-extensions:2.2.0'

//Kotlin Coroutines
def coroutines_android_version = '1.5.2'
implementation "org.jetbrains.kotlinx:kotlinx-coroutines-core:
$coroutines_android_version"
implementation "org.jetbrains.kotlinx:kotlinx-coroutines-android:
$coroutines_android_version"

//Hilt
implementation 'com.google.dagger:hilt-android:2.38.1'
implementation "androidx.hilt:hilt-lifecycle-viewmodel:1.0.0-alpha03"
kapt 'com.google.dagger:hilt-android-compiler:2.38.1'
kapt "androidx.hilt:hilt-compiler:1.0.0"

//Room
def room_version = "2.3.0"
implementation "androidx.room:room-runtime:$room_version"
implementation "androidx.room:room-ktx:$room_version"
kapt "androidx.room:room-compiler:$room_version"

//Navigation
def nav_version = "2.3.5"
implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
implementation "androidx.navigation:navigation-ui-ktx:$nav_version"

//Glide
implementation 'com.github.bumptech.glide:glide:4.12.0'
kapt 'com.github.bumptech.glide:compiler:4.12.0'

Go ahead now sync your project

Step 2 - Create your models
Create all the data Classes we have talked about in the beginning.
When you create your models do it carefully and look at the Json response.
You don’t have to include properties for each JSON field in the response but
why not, maybe we will need it, if you are lazy we only need the id, name,
gender, status and species but make sure you use the exact same names for
the properties as in the response or retrofit won’t be able to create your
objects.
If for some reason you want a different name you can use
@SerializedName([JSON field name])- same as @ColumnInfo we have seen in
Room.

One last thing pre-plan your room annotations in your Data classes

 In the end it should look like this (for this project the classes don’t have to be
data class but it is wiser):

Step 3 - Adding Hilt
Let’s start with Hilt. Why do we need Hilt you can ask but think of all the
dependencies we have here. The view Model will need the repository, the
repository will require both the local and the remote database. Each database
requires his service and so on. This is just a simple app, the more complex it
gets the more dependencies it has.

This is where Hilt comes to rescue, we can auto inject each dependency and
not have to worry about writing unnecessary code. We just need to tell Hilt
where we need a dependency and where to get it from, it will connect the dots
and take care of the object creation and their lifecycles.

First add the @HiltAndroidApp to your application file

Create both of your fragments and add to them @AndroidEntryPoint annotation
meaning they can get the Hilt dependencies.

Also create their View Models and add the @HiltViewModel and the @Inject
constructor

Now since we don’t own the retrofit classes and we can’t created an Injected
constructor we must build the Retrofit module inside our di package. There we

must annotate by @Provides each of the dependencies we need to provide, this
will be our bag of dependencies. The class will be installed in the
SingletonComponent, meaning it will be available for all of the app. We also use
the @Singleton annotation in cases where we want only one instance of the
provided dependency. For now we just add a function that returns a single
instance of the retrofit and also his constructor’s Gson dependency.

One more thing. I want to explain more about the Gson. Here we are not doing
any specific deserialization meaning our response JSON object will be directly
mapped into the corresponding object - the json object has two keys one for
the info and one for the result and so does the Kotlin data class. But if we
wanted to map the result to a character class without the extra classes on the
way then we would have needed to go into the root object get the array under
the key results and fit each json object there to the character class - this is
custom deserialization. For this we would have need to pass a custom Gson
converter factory and not the standard one like we did here.

A nice and very simple tutorial on how to do this can be found here:
https://www.woolha.com/tutorials/retrofit-2-define-custom-gson-converter-
factory

We will get back to this module and add provider functions to the rest it’s of the
data parts. But now let’s go ahead and create them, only then we can supply
dependency for them.

Step 4 - Room Database
We will start From the easy part - Room Database

Besides the retrofit work, we are also interested in storing and getting data
from a local database. We need it in order to show at least something to our
users when they are out of connection or before the data is fetched - with slow
connection. We are going to use it as a cache for our system.

Add your Dao and create functions to retrieve a character by id and all
characters, and functions to insert a character or character list. Please make
the insert functions suspended and the only thing we need is to execute it from
a coroutine scope. Room will take care of their implementation including their
background capabilities. Please note that the fetching functions don’t have to
be suspended because LiveData is already asynchronous - it is working on the
IO Dispatchers.

Our Dao should look like this:

And our app database will look like this

Please note:
fallbackToDestructiveMigration() - tells Room that if the database version
had changed and No Migration guide is found not to throw an exception but
instead delete the old table and recreate it.

Step 5 - Retrofit calls
We are all done with the caching of the data and move to fetching. Let’s create
our data fetching service (same as the Dao in Room). This interface will be
called CharacterService and it will contain two functions: both annotated with
@Get(“[path]”), both suspended meaning they can be executed on a
background thread and both return the retrofit Response object with the Kotlin
class that that json object should be parsed to. Amazing what could be
achieved in a single line of code!
The code should look like this:

Note:
You can use The @Query annotation to add the functions parameters and
append them as the Query parameters.
For example:
If we want to add to the base URL this path “/maps/api/gecode/json?” With that
parameters: “address=90210&sesnsor=false”
We will create the following Get call

 @GET("/maps/api/gecode/json?")

 suspend fun getLocationInfo(@Query("address") String
zipCode,@Query("sensor") boolean sensor);

Retrofit also offers a returned Call that can be executed async but here the
function itself is suspended so we don’t need to use retrofit’s background
execution queue and execute Call on it.

The functions returns Response. When we invoke it we can check if it is
successful and it has a data that can be null for both cases and a message that
won’t be null if there was an error and in that case there is also his code. More
then that some exceptions can occur while executing the retrofit call (meaning
not getting the response at all).
It seems like allot of different branching when all we care about is Success,
Failure or Loading to be checked in a nicely organize when() {} clause. And we
are going to do allot of work to achieve that, but this work will done once for all
Requests. It will be Generic enough to serve us in every retrofit invocation.

First create your Wrapper class for the Response.
The base logic is to create a sealed Status object that works on a generic
covariance that will be its data. From this sealed class there will be three
derived classes: Success, Error (which will hold an additional error message)
and Loading. We will create the Resource class with Status as her property and
three Factory methods which we will create the suitable Response object with
each status option :

When we get an instance of this Resource wrapper class it will be very easy to
check:

More than that, because Status is sealed the compiler will warn us if we forget
to check any of it’s subclasses.

So the wrapper class is ready now we need to actually call the function and
wrap the Response with that Resource.
To do this in A Generic way we will create a base class with getResult function
that will get the Response and return the appropriate Resource. Then we will
inherit from that generic class to a specific data source for our service and call
the generic getResult with functions from our service. Our data source will have
an @injected constructor that will get the specific service and create wrapper
functions for each of the service function. Don’t worry about the injection we
will provide the injected service in our AppModule

While we created our Resource classes in the util package generate this two
classes in the remote db folder.

 our new added code will look like this:

●

●

●

●

Step 6 - Repository
The very last thing we have to do in terms of our data is to create the
Repository.
First let’s explain our policy for local and remote data fetching:

First we need to let our LiveData know that we are looking for the
Character, so that should be the LOADING state.
Then, we would like to get that character from the local data source,
because it is faster than getting it from the internet. If it finds it, we are
changing the state to a SUCCESS
Regardless of the result of the local database operation, we would
want to keep our app synched, so we are fetching the characters from
the internet as well (but remember that the ui thread won’t be blocked
and the user can already see the correct characters information).
Finally, we need to save our result from the remote call in the local
database, in order to keep it updated.

To achieve that we can use a Generic get function that receives three functions
as parameters: One for local fetching, one for remote fetching and one for
saving data. Then we will use the LiveData coroutine builder to create scope for

running our suspended functions synchronously and get back the result as a
LiveData object (please note that we need to tell the LiveData builder we want
to run our job on the Dispatchers.IO because this default LiveData scope is the
Main UI thread where emit is called). We are creating a scope where the
suspended functions can wait for each other although they run in a background
thread, and updating the data they fetched using emit which is called on the
Main UI thread for anyone who is observing these returned LiveData. You can
also emit multiple values from the block. Each emit() call suspends the
execution of the block until the LiveData value is set on the main thread.
You can read more here:
https://developer.android.com/topic/libraries/architecture/coroutines#livedata

We will use both emit() and emitSource() function from within the LiveData
scope. These functions defined by the LiveDataScope interface and are used to
update the LiveData value or it’s source. Meaning emit will be used to update
the LiveData stored value and emitSource the LiveData itself and then each
change will be auto updates by the LiveData. These are both suspended
functions meaning it will pause the scope until the LiveData is updated.
Remember: Inside a suspended function, calls to other suspended functions
behave like normal function calls. We stop and wait. We work on the same
coroutine that can be stoped and continued.

So our helper function will look like that (put it a general DataFunction Kotlin file
located in the util package):

If you are wondering why you see two generics it is because we need to
distinguish the value stored in the LiveData from the value retuned by the call,
for example in a single function call we are getting all the characters from the
remote db we get a Response<AllCharacters> while from the local db we get
LiveData<List<Character>>. The A represent the retrofit’s generic while the T is
the Room generic.

And last but not least we will write the Character Repository. It’s @Injected
constructor will get the local and the remote services by Hilt and will use this
function above to do all the work. Please note that we use the @Singleton
scope so one instance of the repository is for all of the app. This repository will
be auto created and injected later on to our view model.

Add put them all together in you AppModule dependency bag
Remember if you @provide a class then all of its constructor parameters also
have to be provided!
Our final AppModule should look like that:

1.

2.

When we want to create our Retrofit service to execute our queries we can call
create on our retrofit instance. It will create an implementation of the API
endpoints defined by the service interface.
Please also note that we are using @ApplicationContext that allows hilt to
provide application context without having to explicitly specify how to obtain it.
And also note that we don’t need to provide the CharacterRepository and the
CharacterRemoteDataSource since we they have the @Inject constructor
meaning Hilt can generate these classes without the need to explicitly tell him
how.

Thats It for our data and the dependencies! Now all we have to do is the easy
part UI!

Step 7 - UI
First copy the four xml files found on the starter into your res/layout folder
Please note a few things:

In the activity_main we have a custom tool bar this for setup with the
navigation component
Still in activity_main We Have the FragmentContainerView please
notice his id and the nav graph id - when you create the nav graph use
this id or change it here to what you will use

Go ahead and add your navigation graph to your resources with name
corresponding the the Container mentioned above. Add both of your fragments
and create an action between them like here:

Add your view binding to the app Gradle file
viewBinding {
 enabled = true
}

Define your view binding and pass the root view.
Get your Navigation controller And connect you toolbar to your navigation
component for the purpose of showing the current fragment label in the app
bar and navigating back. Your MainActivity should look like that:

Let’s start with all the characters and their RecyclerView adapter - use Glide
for the pictures and also create an interface to pass the item click to the
fragment who will implement the interface. When clicked pass the character id.
In this example I prefer to get the listener in the adapters constructor and only
it. The list of characters will be updated through setCharacters function you will
add to the adapter.

Here is the full Adapter code:

Now for the final stage: Your Fragments and their View Models!

Let’s start with AllCharacters - The ViewModel should supply the list of
characters. All it needs in its Injected constructor is the repository. We will
create a single characters property and get it from the repository. This will be

the observable LiveData.

In the Fragment get your view bindings. Don’t forget that the fragment outlives
it’s views so release your binding in the onDestroyView. Don’t worry about the
hassle, in the end you will get a property delegate that does this automatically
while observing the corresponding fragment’s lifecycle events.

Create the adapter and implement his Listener, the item click should perform
the navigation’s one and only pre-made action and pass a bundle containing
the supplied character id.
Get the RecyclerView set it’s layout manager and the created Adapter above.
Now observe the characters from your view model and upon invocation check
your status. in case of loading show the progress bar, In case of Success hide it
set the adapter’s characters, and in case of an error hide it and prompt the
error message in a Toast.

Our very last part of this very long journey is the detailed character fragment
and it’s View Model.
First, our View model should get the repository and get a character by it’s id.
Now this is a tricky part. Think a little about how to solve this.

First we need a character property so we can observe it. But what will trigger
the event?

We will create a character look up as a transformation of the id.
The id will have a public set function that we will invoke from the fragment.
The character field will be defined as a transformation of the id. As long as your
app has an active observer associated with the character field, the field's value
is recalculated and retrieved whenever id changes.

There is a reason why we use the internal _character - it is a mutable live data
and therefore can be dangerous to expose that is why we will return only
LiveData with a public character

For more reading on transformations:
https://developer.android.com/topic/libraries/architecture/
livedata#transform_livedata

And that’s it for the View Model

As for the fragment do the same binding as before and when your view is
created get the id from the arguments, remember to deal nicely with null, and
set the value in the view model value, this will trigger your character observer
and upon invocation will update the ui!

One last thing I have promised for a simpler solution to the fragment view
binding.

Take AutoClearedValue.kt and copy it into your utility package. Until google will
add this property delegate we will use this. This property delegate keeps track
of the fragment lifecycle and upon destruction of the fragment update null
value in the property

Use the by autoCleared() for your binding properties and remove the _binding
and its related code.

